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Fast ions in tokamaks are known to have a significant influence on global plasma instabilities. In
normal mode analyses for tokamaks, the perturbed electric and magnetic fields have been evaluated
at the position of the particle’s guiding center. The effect of spatial variation of the perturbed fields
within the gyroradius for resistive internal magnetohydrodynativlelD) modes is considered in

the present paper. The resulting tearing mode stability for the reversed field Rk is
investigated. Such effects are important for neutral beam injected particles in current RFP
experiments and for fusion-generated alpha particles. The fast particle dielectric response is
evaluated from the linearized Vlasov equation, and inserted into a cylindrical MHD model for the
bulk plasma. The response is found for the simplified particles distribution function assuming that
equilibrium magnetic field is uniform within the gyro-orbit. The effect of large gyroradii is strong,
and can be either stabilizing or destabiliziiegpending on the radial distribution of the fast particle
density. The effect is maximal when the fast particles reside near the tearing-resonant
surface. ©2004 American Institute of Physic§DOI: 10.1063/1.1643058

I. INTRODUCTION experimen® the Larmor diameter of fast ions arising from

) ) .. NBI (at 20 keV is about one third of the minor radius. The
Fast ions in tokamaks have been found to have a signifiperpendicular wave length of global plasma modes is com-
cant influence on the dynamics of global plasma stability,, apie to the Larmor radius of fast particles. Thus the finite
The effect can be stabilizing or destabilizing. The destabilizy - mor radius effects mentioned above can be important.
ing influence has been observed in fishbone oscillations of,e noniocality of the FLR fast particle response introduces
neutral beam injected\BI) plasmas; the stabilizing influ- oo hjication in the modeling. In RFPs these FLR effects

ence has been observed in the Joint European Torus tokamgfhich survive in the limit of homogeneous equilibrium
in which fast ions are produced by radio frequency heatingy,gnetic fieldl should be addressed along with the effects of

(see review by Porcefi. _ the inhomogeneityparticle drifts, toroidal trapping The lat-
In normal mode analyses of tokamak plasmas with oW 51 extensively studied in tokamaks.

poloidal and toroidal mode numbers the fast ion response has |, our linear mode analysis we concentrate on FLR ef-
been described by the linearized Viasov equation in which agcts only and evaluate the stability of resistive internal
expansion over the parameter p,_/a is made, V_the_r?L IS" current-driven magnetohydrodynami®HD) modes. We
fast ion Larmor radius ana is the minor raduzj - The  ,se the Vlasov equation to calculate the fast particles current
finite Larmor radlus(l':L.R) terms starting frome” are ne- griven by the perturbed electric and magnetic fields assum-
glected in the analysis; thus the effects due to spatial variang that the equilibrium magnetic field is uniform within the
tion of perturbed fields within the gyroradius are not Cons'd'gyro-orbit. Our analysis is a special case of the general ap-
ered. Exactly these effects we call FLR effects in our StUdyproach suggested by Brambfildor finding the low fre-
The neglect of FLR effects has been motivated by two réag ency plasma response by integrating the linearized Viasov
sons. First, the gyroradii are typically larger than the reS'St'Veequation along the unperturbed orbits.

(reconnectionlayer width. Hence, it is argued that the influ- We consider a cylindrical plasma and a simple fast ion
ence of the large gyroradius particles is suppressed througfstribution function

orbit-averaging over an oscillatory radial wave function.

Second, the gyroradii can be much smaller than the perpen-

dicular wavelengths, so that the wave fields can be consid- f(y)= %5(%—00)' Lexﬁ—vﬁ/v%)

ered to be constant within a gyrodiameter. However, the U0 \/;vT

present work suggests that these arguments may not apply,

and finite gyroradius effects may be important, for some towith the assumption+<<v,. This approximates the distribu-

kamak cases of interest, such as tokamaks with particles ition of perpendicularly injected fast ions, makes it possible

the MeV range. to find the conductivity kernel analytically, and retains the
The FLR effects may be particularly important for the FLR feature. The fast ion current, driven by the perturbed

reversed field pinchRFP. In reversed field pinches the electric and magnetic field, is inserted into the MHD equa-

magnetic field is an order of magnitude smaller than in tokations to find the changes to the tearing instability with poloi-

maks. For example, in the Madison Symmetric ToMMST) dal wave numbem=1 in the RFP.
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Our results show that for typical neutral beam injectedEquations2)—(5) are Fourier analyzed so that spatial depen-
fast particle densitiega few percent of the bulk densjtthe  dence proportional t@'™?*'¥? is considered. The boundary
changes to the growth rates are substantial. The effect can alue problem for the plasma eigenmodes is defined by Eqgs.
stabilizing or destabilizing depending on the radial distribu-(2)—(5), and by the boundary conditions on axis and on the
tion of fast particles. Results depend strongly on the partisurface of the perfectly conducting shell. On axis field com-
cle’s Larmor radius. The FLR effects alone can significantlyponents are regular and a1 E,(1)=0, E,(1)=0. We
change the mode dynamics in RFP. The result is influencedonvert field components into a local coordinate frame con-
by the presence of fast particles inside the transition layenected with the equilibrium magnetic field. The triad of unit
(the effect which considered to be negligible in tokamakvectors of this frame iss, e,=bXe, g=b, whereb
modeling. Finite spread in parallel velocity of fast particles =B/B. From Egs.(2)—(5) we obtain a set of rather bulky
reduces the effect in our model. This reduction is probablyequations for Fourier amplitudé; , B,,. B, corresponding
less significant when particle’s trapping is included. to wave numbersn andk. These equations contain an alge-

Section Il contains an analysis of internal modes withoutpraic equation forB,, and two second order differential
fast particles. In Sec. Ill we derive the conductivity kernel equations foB,, and B, with coefficients containing deriva-
for calculation of fast particles current. In Sec. IV we com-tjves of equilibrium field components.
bine fast particles component with plasma bulk. This section  The |ocation of the resonance surfaceis defined by
also contains a description of the approach used for soIvingH(rS)zo where
the combined system. In Sec. V we present the results of our
study. We summarize in Sec. VI.

m B,
r'B

k”: k'b:

B,
Il. CURRENT DRIVEN MODES WITHOUT FAST +k§'
PARTICLES

To find the eigenmode we match solutions found in the re-

First we develop the numerical method for finding inter- X
gions Osr=<rg andr,<r=<1 at the resonance point as fol-

nal cylindrical eigenmodes in an RFP equilibrium. We c:on-I i ¢ bound diti
sider the resistive MHD modebee, e.g., Ref.)7in the limit ~ 1OWS- APPlying two sets of boundary conditions Bt rs

of zero plasma pressure for the description of the plasmgv(r_s)zl’ By(rs)=0 an_dB,,(rS)_zo, B“(rs.)zl fo_r fixedw_
bulk. We normalize variables such that we find the corresponding solutions of differential equations

in these two regions which are subject to the boundary con-
_ = ~ C Bo~ ditions atr =0 andr =1. These solutions are found numeri-
r=ar, B=BoB, E:?BOE' ‘]:EEJ’ cally by a finite difference method. Continuity of current
components), andJ, atr=rg (which is equivalent to con-
_ Bo tinuity of B, andB|) applied to an arbitrary linear combi-
va= Jamp, nation of the two solutions leads to a set of two uniform
algebraic equations for the unknown coefficients of the linear
_a _ o~ o~ combination. Then we scan frequeneyto find the eigen-
r A A’ p=pPob. =707, value for which the equations have a solution. For the found
5 eigenvalue relation between the coefficients provides the
S= B' TR:4727a , necessary relation betwe@), andB, atr=rs.
TA C™ 7o In this approach equations based on the resistive MHD
wherea is the radius of the cylindeB,, po, 7, are equi- Model are solved on the entire intervak@<1. Such an
librium magnetic field, plasma density and plasma resistivity2PProach is more numerically intensive than the one in

atr=0 andS is the Lundquist number. In all of the follow- which resistive MHD equations are solved in the vicinity of
ing equations in this section the variables are normalized. the resonance surface and the ideal MHD equations are used

We consider a force free equilibrium in which in the rest of the plasma. Introduction of the nonlocal fast
particle response is more simple, however, in the model in
VXB=pu(r)B. (1) which one type of equations is used everywhere in the

Azimuthally and axially symmetric solution of E¢l) gives ~ Plasma. _ _

equilibrium field component§ -0 §g(r) g(r) We lin- One should also note that matching solutions at the reso-
r I I z . . . . .

earize resistive MHD equations about this equilibrium. As-hant surface is more appropriate for numerical analysis than

suming time dependence proportionaletd ® equations for the adjustment of boundary conditionsrat 1. In the latter
the perturbed quantities are case an arbitrary boundary conditionrat 1 excites(in the

resistive MHD modela very rapidly growing solution in the

E4yXBe 23, @ region qutS|de the resonance layer resulting in a stiff matrix
S in the eigenvalue analysis.

- _ The equilibrium current profile is parametrized such that
—lwpv=JIXB+JIXB, B u=2041—(r/a)*]. We also assume thai(r)=1 and
VXE=iwB, 4) n(r)=1. A sta_blhty dlagram_ for them=1 modes in the _

ag—0, plane is presented in Ref. 8. We reproduced this
VXxXB=J. (5) diagram here in Fig. 1. We analyze the effects of fast par-
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FIG. 2. Field components of tearing modi@ arbitrary units. (a),(b) S
=10% (0),(d) S=10°. In all caseswy=3, ©,=1.75,m=1, ka=—2.

FIG. 1. Stability diagram fom=1 modes[V. Antoni, D. Merlin, S. Orto- r/a
lani, and R. Paccagnella, Nucl. Fusigf, 1711(1986).]

ticles on the modes in the unstable region of the diagram. In

the following sections we will focus on pointd (ay=3,

O: 175), B (6(0:2.6, 021.8), andC (a0=2, @0:2)

on the diagram in Fig. 1. perturbed electric and magnetic fields with wave nuniber
Figure 2 shows the radial profiles of field components ofjg

tearing mode for equilibriund for two Lundquist numbers.

The field components are in arbitrary units but their relative

magnitudes are preserved. Magnetic and electric field com-

ponents calculated wits=10* are presented on Figs(a

and 2b). The components calculated wis=10° are pre- o

sented in Figs. @) and 2d). The wave numbers for these +J' J dx dygﬁ(xyy)Bj(X,y)_

figures aran=1 andka= — 2. ForS= 10" the growth rate of —oJ -

the tearing mode isy7a=1.10<10"3, for S=10° y7u 6)

=6.40< 10 “. Electric field components of the mode are

localized near the resonance surféitee same is true foE, ) o o £

which is much smaller thag, , E,, and is not presented in |thhIS equatiori,j =x,y,z. The conductivity kernels; and

these figureswhile magnetic field components are spread?ij Which are to be found are functions of coordinates/

over the entire plasma. The electric field is more localizedVhich are defined in a vicinity of point labeled=0, y=0.

for larger S. The growth rate scales agxS 2% when S Magnetic field in Eq.(6) can be expressed in terms of elec-

— . The mode structure for equilibriunBandC is similar ~ ic field using Maxwell equationVXE= (iw/c)B. We
to the one presented in Fig. 2. keep, however, the separate contribution from electric and

magnetic fields as in Eg6). In this form the kernel compo-
nents are more simple and more suitable for numerical analy-
Il. FAST PARTICLE RESPONSE sis.

Ji(x=0,y=0,kz)=j_ J'_‘ dx dyof;(x,y)Ej(x,y)

B

First we consider kernels}; and o};

tation such that

: . . in Fourier repre-
In this section we evaluate the fast particle response to 8n

perturbation of the electromagnetic field. For the time of the
mode growth fast ions are collisionless. We concentrate on
finite Larmor radius effects only and find the linear nonlocal
dielectric response of a population of fast ions in a uniform
magnetic field. In the following sections we will use this
response to calculate the changes to the internal modes in
RFP. With this simplification a reasonable accuracy is prewherek,, k, are the wave numbers corresponding to coor-
served when particles are distributed not far from the magdinatesx, y. For a general distribution function of fast ions
netic axis. F(v, ,v;) and fork=k, e,+ke, the conductivity tensor is

Let Bllz, then in general in the uniform magnetic field found by the integration of the linearized Vlasov equation
the relation between the perturbed current of fast ions andlong the unperturbed particles orbitee, e.g., Ref.)9

Ji(kxvky):Uﬁ(kxaky)Ej(kx:ky)
+aif (Ky, Ky)Bj(ky k),
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andJ, are the Bessel functions. In Ef) o, andw; are

the plasma and cyclotron frequency of fast ions.
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NEM, v).ko) |, (7)

wherev, , v, are velocity components in cylindrical coordi-
nates. Such a choice of the distribution function permits an
analytic calculation of the conductivity kernels in £§) and

it is appropriate for focusing on the FLR effects which are
related to the perpendicular part of the distribution function.
We retain some Gaussian spread in parallel velocity which is
relevant to realistic distribution functions and can influence
significantly the results of our study. We consider, however,
the cases in whicht<<vg.

In our case the growth rate of the mode is much smaller
than the cyclotron frequency of fast ions. There is a small
parameters =|w|/w¢;. Careful analysis shows that for the
given perturbed field amplitudes presented in Fig. 2 the
dominant contribution to the perturbed fast particles current
is due to componentsy,, oy, oy,, oy, Te. The re-
sponse due to the other components is at least by the factor
smaller and they are not considered in our analysis.

Substituting the distribution function of E¢B) into Eq.

(7), and usinge <1 andk”vT< w¢i One obtains

ob(k,w)= b — - Eiodo(€10)31(£10)

LZ(L) ©
.|kH|UT |kII|UT '

O'Ey(k,(x)) = U-Ex(kaw)

2

1
s wc'g [Jo(&10)d1(€10)é 10l (10
1 ik
TSI LR
(i) 2 i a
ko Ikjlor)’
M 1 p
ffzx<k'w>=—4—7— o(€.0)1(é10)
(i) 2 i 1
' |kII|vT |k”|UT ’

whereé, o=k, vo/w¢ andZ is the plasma dispersion func-
tion. In our case of energetic i01g5 o is not a small param-

eter. In Eq.(9) we neglected the terms which survive when
£, 0—0 (they correspond to polarization drift of particle in

We consider a simple distribution function of fast par-the perturbed field because they are of the order of

ticles

2, 2
UH/UT,

1
Fv)=5_—d(v,~vo)

\/—UT

27TJ’ dULULJ dU”F(V):l,
0 — o

8

2w/ . The componenty, (K, ) in the context of waves
in plasmas is responsible for the transit time magnetic pump-
ing effect which is the FLR effect remaining finite in the
limit £—0.
The conductivity tensor components describe particle
motion in a field which can vary significantly within a gyro-
radius, the case of interest here. In the limit of small gyrora-

Downloaded 23 Feb 2005 to 128.104.223.90. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



984 Phys. Plasmas, Vol. 11, No. 3, March 2004

dius (¢,0<<1) and zero parallel velocityvG—0), the cur-
rent obtained from the conductivity tensor contains both
single particle guiding center drifts and effects that arise only
with a distribution of particlegsuch as magnetization cur-
rent9. In the small gyroradius limit, therfy component re-

)

©

V. A. Svidzinski and S. C. Prager

1
_ /22_ b2,

2
0, b>2.

0<b<2,

J2(x)J1(bx)dx= (14)

duces toEX B drift in the wave electric field and the,
component reduces to the uVB force (where u is the
magnetic moment The other two components in Eq8)—

(12) do not yield currents that can be reduced to known

single particle drifts.

Transformation of the conductivity kernels from Fourier

These integrals can be found in Ref. 10. An elegant property
of these integrals is that the result of integration is nonzero
within a limited range of the parametbr This property is

directly related to the fact that the conductivity kernels are

representation tax, y coordinates involves integrals of NONZero within the particle’s Larmor diameter from the point

Bessel functions

where the current is calculated. In the Appendix we present
the details of the derivation of the contribution to the con-

B 1 0<b<2, ductivity kerneloj(x,y) due to theoy, (k,w) component of
f xJo(x)J1(X)J1(bx)dx=1{ m2Z—b?’ the conductivity tensor in Fourier representation. The contri-
0 0, b>2, butions from the other components of Eq30)—(12) are
(13) calculated in a similar way. The result is
|
c ‘]X(oyo)} i 0 Z( o )fzwdajzl;o/wci g 1
Oy =- —_— —
Y 13y(0,0 (2m? o |klor \lklor/ Jo 0 Vo weil |2
m\/2°—
Vo
cosd sing | JrEy(r,0)]
*1\ sing E,(r,0)+ —cosé ar ' (15)
E e ‘]X(oyo)}_ 1 wgifzwdajzvomddr Wil 2 1 sing coséd Er(r,e)} 16
DTy 300,07 843 vy Jo 0 o wr\2\—cosd sing/[Eyr.0)]
22_( ci )
Uo
2
ol JX(O’O)}: I ﬂkvoﬁ.( @ zz,( @
100 167 0 o c kvt kylvr
- wCir)z -
) Uo wil 2
_S'”9—2 cosh \/ 2%—
[22 ((ucir> Vo
2m 2vgl o Vo B,(r,e)}
X
fo dﬁjo dr (wCir>2 |:Bg(r,a) ] (17)
Uo Wil 2
C059—2 sing\/ 22—
22 (wcir) Uo
L Vo -
M. ] (O 0) i (l)rz)i Wi ( [0) )ZZ,( [0} )fZWdGIZUO/wCi Wej r B (r 6) (18)
Ty O=————— — ,
e 8’ c \lklor lkjlor/ Jo 0 Vo waf\2
- 22_( Cl
Uo
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In these equations current componeltsJ, , J, at the point  Because of a localized structure of eigenfunctions an en-

x=0, y=0 are calculated in terms of integrals of field com- hanced numerical resolution is required in some cases for

ponentsE, , E4, B,, B, calculated in polar coordinates #  accurate integration.

such thatx=r cosé, y=r sin 6. The integration is limited to Equations(15)—(18) can be simplified as follows. Using

the area inside the circle with the radius equal to the LarmoMaxwell equation

diameterLy=2vq/w¢; of ions. 19 1E e
The conductivity kernel components in Eq45)—(18) VXE|,== —(TEy)— — U ,

are singular but integrable at=L,, following from F(v) ror rdg c

*8(v, —vg). Also because of this kind of distribution func- one can express the combination of electric field components

tion used in the calculations the response due tod@e in Eqg. (15) in terms ofB,. Then the change of variable

component involves not onl, , E, but alsodE,/dr. For a .

regular distribution function the kernel is regular and one can r=Losing (19

avoid the presence of spatial derivatives inside the integrateduces Eq(15) to

[Jx(o.m}_ Lo 0 o Z( © fz”daj”’zd ( sinf
J0.0] 47® ¢ [kfor "\ [kfor/ Jo 0 Al —coso

sinBB,(Lysing, 0). (20

In a similar way the change of variable of E49) simplifies  response can be comparable with the response on the domi-

Eqgs.(16)—(18). In these new variables the conductivity ker- nant electrostatic part of the electric field because of the scal-

nels are rggular s_imple functions which are well suited foring 05x~80-5y [see Eqs(9) and(10)].

numerical integration. _ _ In order to use the fast particles response found in this
In the above derivations we obtained analytical resultggtion in the analysis of cylindrical eigenmodes with wave

for the conductivity k_ernels ix, y (orr, 0) coordmates. It numbersm andk one should find the corresponding integral
seems that an analytical result cannot be obtained when one, .. . . . .

. . . . rélations between the Fourier amplitudes in the global cylin-
replaces one of the coordinates by its Fourier representatio

; o ?i’rical coordinateswhich are not connected with the point in
for instancex, k, combination.

Perpendicular electric field in the eigenmodes in Fig. 2 ighhich the perturbed current is considereéor this one

mostly electrostatic. Particles current responding on the elecghould recalculate the above integral relations in global cy-
trostatic part of the electric field is due to th€, component.  lindrical coordinates and then make a Fourier transform of
Equation(20) shows that the current due y component coordinated. One obtains the corresponding contributions to
is the response on electromagnetic part of perturbation. Thige current response

I Sy~ (2w _ (e w ( w ) siné :
E . r — . i - m ima
Tyl [Jf]‘(r) 7_rzLofo defo dg |ku|UTZ oy sing — cosh B, (rye'me,
IJNr)] 28, va (27 . (72 sinae cosa\|EM(ry) ] .
E E . r _ - ; r ima
Txy»Tyx- [Jf]‘(r) ™ awg; fo dafo dpsi —cosa sina/|E}(ry) e
JN(r) i 61 ((u i\ 2 J‘ZW _ [ml2 ( D) )2 ( ) .
M r Cl 2
: =—S|—]| L de dgk;- Z' g'm«
Tyx )] 47l o] 0o 0 Bk kv kot
—sin@sir? B cog a—6)+cosfcof Bsin(a—0)  sindsir? Bsin(a—6)+cosd cos B cog a—6)
X ~ ~ ~ ~ ~ ~ ~ ~
cosésir? Bcoga— 0)+sinfcos Bsin(a—0h)  —coshsir? Bsin(a— ) +sinbcos Bcog a—6)
[Brrn(rl)
Br;(rl) ’
M. m _iﬁ%'" jzw ~fﬂ/2 w 2/ w ; _ Zypm o _ Hypm ima
Oy’ J”(r)—zw2 " Lo . de . dg- Ik Jor Z K [or sing[coga— 0)B'(r1) —sin(a— 0)B;(r1)]e™*,
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wherer,= \/(r+Losinﬂcos§)2+(LosinBsin?)z, cosa=(r We find the changes to the growth rates of unstable
+LysinBcosh)ir,, sina=LysinBsindlry, Lo=Lo/a, & modes due to the presence of fast particles by two methods.
° i 0 LoC0 S0t L First, assuming the fast particles response to be a correction

=wl2]ia2/cz. In the above equations components of current,

electric and magnetic fields are normalized as in the begin© thé MHD current we develop a perturbation technique for

ning of Sec. Il.r; is the radial coordinate which is the func- finding the change; to the gr.owth ratg. .I.n a different ap-
tion of variables of integration. The basis, e, , g is de- proach based on a time evolution of an initial value problem
. L 7]1

fined in Sec. II. In these equations recalculation in the global'® find an accurate solution with the presence of fast par-

- . . ) . . ticles. In this approach the accurate solution is found for the
cylindrical coordinates is made with approximation tBat. E bp

The use of these equations for real RFP equilibrium is valid. ¥¥ component of fas_t I0NS response. Th(_a exact time evolu

. . ._tion method is numerically intensive and it is developed for
only when fast particles are not far from the magnetic axis. e . .

. . ) . one specific casésee the remark later in this sectjoe
We assume that the density profile of fast particles is taken :
: ) . use the exact method to benchmark the perturbation tech-
into account by a radial dependence of coefficiént ;
. ) : nique, and then use the latter for the results.
In the above equatioris, is now the function of , de- In the perturbation technique the substitution of the form

fined in Sec. Il. We moved thle(r) dependence inside the P q

integrals due to the following. For an arbitrary spectrum of8 7B+B. ..., w—otAw is made in Eqs(2)-(4),2D),
electric field the spectrum of current i9(Xq,Yo.K,) where B, o relates to the eigenmode values without fast

= [fdx dyo(Xx—Xo,Y—Yo,k,)E(X,y,k,). The response of particles. A~s in~Sec;II one can derive a set of equations for
current on electric field of the formE,(x,y,z) amplitudesB,, B,, By in the form in which the right-hand
=E,(x,y)ekONZ is  J(x0.Y0.2)*ffdx dyo[x—X,,y  Side in these equations contains terms proportionahdo
—Vo,K(X,Y) TEL(X,y)eK9ZIf k(x,y) slowly varies with  (they contain combinations of the unperturbed field compo-
X,y one can assumek*¥2~ gik(xo.Y0)z \yhich validates the Nnents and terms containing componer¥s(these are calcu-
insertion ofk,(r) dependence inside the integrals. For thelated as a response on the unperturbed fields of the eigen-
k,(r) profiles used in our analysis this approximation is jus-mOde-

tified for almost the whole range of the examined Larmor ~ The general solution of these equations is

diametersL. For a finitevt in the distribution function of
Eq. (8) the conductivity kernel strongly depends lonin the B
vicinity of the resonance surface. The positioning of the de- =Cy
pendencé(r) inside the integrals properly handles this situ- '
ation.

2

/
Bj

f
v

f
BI|

A

1
BZ +C, + +Aw Z). (22
BH BII

By

The coefficientsC,; and C, in this solution are arbitrary.
FunctionsB?,, Bf andB?, B are the solutions of uniform
equations corresponding to boundary conditions on the reso-
We assume that the fast ion density is much smaller thanance surfac®X(rs)=1, Bj(rs)=0 andB(r5)=0, B(ry)
the bulk density. We neglect the influence of fast ions on the=1. FunctionsB! , Bf andBS, Bf* are the particular solu-
plasma equilibrium, as well as the collisions between bulkions of nonuniform set of equations corresponding to the
particles and fast ions. The fast ions are considered as rght-hand-side terms which contain componedts and
separate plasma component which interacts with the plasmahich are proportional tdAw, respectively. These solutions

IV. FAST PARTICLE CONTRIBUTION

bulk only via the collective electromagnetic field. are calculated with the boundary conditicB%(rs)=B“;(rs)
If we assume thal is the current of the plasma bulk then =0, B (rs) =Bj(r5) =0.
the contribution from fast particles changes only Es). in With the help of the solution of Eq22) one can find the
the set of Eqs(2)—(5) such as total plasma current in two regions0r <rg andr<r=<1.
VXB=J+J;. 1) Matching the tangential components of the total current at

r=rg leads to an algebraic nonuniform set of equations for
In this equation); is the current response of fast particles onthe coefficientsC,; andC,. Because the functions with su-
the specified perturbation of electromagnetic field. We neperscripts “1” and “2” are the solutions of unperturbed
glect the contribution of the fast ions to Ohm’s law. Henceproblem, the determinant of the set of equationsGgrand
the fast ions enter the MHD dynamics only through theirC, is zero. In order for this system of equations to have a
influence on the perturbed magnetic field. The respalise, solution, it is necessary that the rank of the coefficient matrix
is calculated in the preceding section. There is also a contrbe equal to the rank of its augmented matrix. This condition
bution from the electron component that compensates thpads to the equation fakw.
charge of fast ions. Because of low density the response from  |n a different approach we solve time dependent resistive
this component is negligible relative to the response fromMHD equations combined with Eq21) as an initial value
bulk electrons. This component, however, makes a contribuproblem. We solve this problem in this way only for the fast
tion when theEX B drift of the electrons in this component ions response due tmgy component of the conductivity ten-
is not balanced by the drift of fast ions because of the FLRsor and only in the limitv+=0. In this case the current re-
effects. This contribution is formally included il in Eq.  sponse of Eq(20) is local in time (it does not depend on
(21) (we discuss it in Sec. VCEquationg2)—(4), (21) for- frequencyw) which simplifies the solution method. The ini-
mulate the eigenmode problem in the presence of fast patial value problem is solved numerically by an explicit
ticles. predictor—corrector method.
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TABLE |. Comparison of results of perturbation method with exact solu- 0 —— AyTy
tion. Dyry b . 2-1073
-0.2-1073 7 0-107%
' _ Changes to the grqwth rate 04 10-5 - 1 9100
Without fast particles due to fast particles | J 4.10- r
—0.6-107% 4 T
AyTa Ayra H 1 -6-1073
Equilibrium YTa perturbation method exact -08-1073| (a) _g. 102 [
@=2,0,=2  1.73x1072 -0.162¢10°2 -0.14x10°2 -10- 1078 55" T 0T 03 03 04 05
ka=-2.3 Lo/a To/@
@y=2.6,0,=18 9.56x10° —2.89x10°3 —-2.1x10°8
ka=—2 FIG. 3. Changes to the growth ratay) due toﬁy component(a) Ay vs
@p=3,0,=175 1.1x10°3 —1.34x10°3 Stable normalized gyrodiametety/a for n¢=2 exg—(r/0.45)%]x 10" cm3;
ka=—2 (b) Ay vs peak radius of fast ion density distributiog/a for n;=2

X exp{—[(r—rg) /0.0%]% x 10 cm™3, L,/a=0.3. In both casesyy=3,
0,=1.75, m=1, ka=-2, vr/vg=0, S=10%, y7,=1.10x103. The
mode resonant surface is located &~ 0.3.
We compare the results of perturbation method with the
exact results from the time evolution approach. We consider - o _ _
changes to the growth rate due @y component of fast Mmore general distribution function is used. In this section we
particles response. Table | shows the growth rates for thregonsider plasma bulk equilibrium described in Sec. Il with
unstable equilibriaC, B, A in Fig. 1 without fast particles uniform density profilen(r)=10'° cm™>.
and the changes to the growth rates due to fast particleg Ufy component
calculated by the perturbation method and by the exact time ) . )
evolution method. For each case=1, v;=0, Lo/a=0.3, ~ We consider a case appropriate for the MST experiment
S=10*, fast particles density profile with magnetic fieldB=3 kG. Fast hydrogen ions with en-
ergy 20 keV have Larmor diametety/a~0.3 for a
1_(”_"" =50 cm. The fast ion response due to th% component
0.35 contains the componei; in the integral over the area lim-
0, r/a>0.35. ited by the Larmor diametdsee Sec. I)l. For the profiles of
. By corresponding to the cylindrical eigenmodes shown in
The wave numberk are chosen such that for each equilib- Fig_ 2 fast ion current, calculated for a typical Larmor diam-
rium in Table | the location of resonance surface is approXieter of neutral beam injected particles, is a smooth function
mately atrs=0.3. The density profile of fast particles covers f radjus everywhere including the vicinity of resonance sur-
the resonance surf_ace. In acpor_dance with the restrlctmns_%ce. The field componer®, does not change sign at the
the model fast particles are distributed not far from magnetiGegonance so that there is no cancellation of terms during the

3

2% x 10" em™3, r/a<0.35,

nf:

axis. ] ] integration. The current is as strong near the resonance as in
For the cases whely is small relative to the unper- he outer region.
turbed growth ratey the perturbation method result is close | the following cases we select equilibriug (ao=3

to the exact result. Whelvy is comparable ta the results of ©,=1.75) of Fig. 1 and evaluate the changes to the eigen-
the two methods show similar trends. For the least unstablg,gge with wave numbersm=1 andka=—2. Figure 3a)
equilibrium in Table 1, the perturbation method gives thesnows the changes to the growth rate versus normalized
stabilizing correction to the growth rate which is larger than g mor diametet_4/a. The correction to the eigenfrequency
the growth rate itself, while the exact solution corresponds tgg purely imaginary, only the growth rate is changed. We

the stabilized mode. Thus the perturbation method is approsave chosen the fast particle density profile as
priate for qualitative analysis. With this method one can es-

timate the strength and the direction of the effect. In the next ne=2 exg —
section the effects of fast particles will be examined using f 0.45
the perturbation method.

2
x 10" cm™3 (23

with v1/ve=0, S=10* and the unperturbed growth rate
y7a=1.10< 103, The fast particle density profile; covers
the resonance surface which is located ndar=0.3. The

In this section we analyze the changes to the growttdependence ady on L in Fig. 3@ is approximately qua-
rates of the unstable modes due to fast particles. We applgratic. The effect is sizableyy is comparable withy for the
the perturbation method discussed in the preceding sectionealistic Larmor diameter and the density of fast particles.
We consider the effects from each component of the condud-or this radial profile of fast particles density the effect is
tivity tensor of Eqs.(9)—(12) separately. Some components stabilizing. The contribution from fast ions is due to FLR
of the conductivity tensor are specific to the highly aniso-effects, disappearing in the limit,— O.
tropic distribution function of Eq(8) used in our analysis We examine the influence of the radial location of the
(they disappear in the isotropic casehile others preserve fast particles by considering a narrow distribution
their property when a transition to isotropic distribution =2 exg—[(r—ro)/0.05]%}x 10' cm™3, and varying r.
function is made. In a separate analysis of each componefor the linear problem\y corresponding to a realistic den-
one can make some assumptions about the results whensdy profile is a superposition of parts due to different narrow

V. RESULTS
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density profilesAy calculated for the particular narrow den- 2y O x T A 0———=

sity profile centered at=r, approximately shows the con- 02 ] W: I

tribution from the fast particles located at this point. Figure — -04[ ] 0210 ]
3(b) shows the dependence Afy onry/a for Ly/a=0.3. 06 1 -04.10 .
The other parameters are the same as in K. 3here is a 08 i ]
strong influence om\y from fast particles distributed near ~ °C @ 1 T0eTf ) ]
the resonance surface. Thus for the contribution fr@@ 2 ! S N I
component the result strongly depends on the presence o 1070t s 0 oL 02wt

fast particles at the resonance surface. The slowly varying
near resonance surface perpendicular fast particles curreRiG. 4. Changes to the growth rate duedfy, component.(a) Ay/y vs
due to this component of the conductivity tensor tends td-undauist numbes for vr/vo=0; (b) Ay Vs vr/ug for S=10 In both
stabilize the mode. In general, the effect is stabilizing for the, ;o1 c"r‘T‘]’_=33i_ 20:01575’ m=1, ka=-2, ng=2exq—(r0.4%)7]
distributions which cover the resonance surface. Results e o
similar to those presented in Figs(aB and 3b) but with

different scales are obtained for other equilibria and different

Lundquist numbers. The relative changes to the growth rat§uded in the coefficient (o/[kj|o7) Z(wl|K|v7) in the
for more unstable equilibria are weaker equation for fast particles current. Because of the relatively

In the cases when the Larmor diameter is specified in ou .”"_'f‘” grol\_/v;h ratey<|w| ths coefﬂm;ant IS e:hsmall factor for
calculations its value corresponds to the realistic energy o nite ria 'Z('CUT e\c/)er_?_/;/]v ere excep ne?rth € resonance jur-
NBI particles in the RFP. In these conditions the assumptio ace where,(r) 0. The suppression of the response is due

of uniformity of equilibrium field within the gyro-orbit is not © the phase mixing in velocity integral occurring when par-

accurate. Results of calculations with smaller Larmor diam—tICIeS velocity is larger than the phase velocity of the pertur-

-y . : ation. Figure &) shows the dependence afy onvt/vg
t
eters are similar to those presented in the paper with the Onlgor the density profile of Eq(23). |A| decreases rapidly

difference being that the changes to the growth rate are’. : e R
smaller. Extension of the model to the larger Larmor diam-W'th the increase ob7/vo. The effect diminishes with finite

eters provides a qualitative trend of the strength of the effec?ara”el tempeEature. Within tthe considered dm;)del the CI(.)nFr"
which is in line with the use of the perturbation method for component is suppressed for a realistic

bution from oy,
the qualitative analysis spread of parallel velocity of neutral beam particles injected
The fast particle distribution is flat when compared with'!

perpendicularly to magnetic field. In a more realistic model
the strongly localized components of plasma velocity andnCIUdIng particle trapping the effect from this gomponent
electric field in the eigenmode. As a result of the introductionCOUId survive. Also the effect should be stronger in tokamaks

of the fast particle component an additional volume forcebecause of the smaller valuelqgf(from the weaker magnetic

Sf(r) is exerted on the plasma bulk. The for6&r) relates sheaJ of the core resonant modes.
to the correction to the right-hand side in E§) due to the
perturbation of magnetic field and bulk current when the fas{3 -
particles are added. The radial spread of this force is wider"
than the resonant region and its shape roughly repeats the The fast ion current response due to &Bé( component
radial distribution of fast particles. The work done by the appears because of anisotropy of the distribution function. In
force 6f(r) on the plasma per unit time ig5f(r) - v(r)dr, the limitv;— 0 this response is proportional & 2 [see Eq.
wherev(r) is the velocity profile in the unperturbed eigen- (17)]. Because of the relative smallness of the growth rates
mode. Because(r) is localized near the resonance the con-this response is very strong. The current response on the
tribution to the integral is strongest frodf(r) near the reso- given perturbation of magnetic field is a smooth function of
nance. Thus one should expect that the strongest effect on thadius everywhere in the plasma. There is no suppression of
eigenmode is from particles distributed near the resonancéhe response at the resonance surface dtcés not oscil-

The width of profilesAy versusr is determined by the latory with radius. Because the response is strong we con-
width of test functiom;(r) used in Fig. 8) which is wider  sider the changes to the growth rate for the most unstable
than the unperturbed eigenfunctions near the resonance. equilibriumC in Fig. 1.

We examine the effect for different Lundquist numbers. For this component we perform similar analysis as for
Figure 4a) shows the dependence &f/y on S for the den-  the componentrgy. In the following cases we consider the
sity profile of Eq.(23). The ratio|Av|/y reduces with the equilibrium C (ay=2, ®,=2) with m=1, ka=—2.3. Fig-
increase ofS. This is probably due to the narrowing of the ure 5a) shows the dependence afy on Ly/a for fast par-
resistive(reconnectioplayer width which reduces the influ- ticles density profile of Eq(23). The unperturbed growth
ence of fast particles within this region. For the more un-rate is y7,=1.73x10 2. The correction to the eigenfre-
stable equilibriaB and C in Fig. 1 the ratio§A+/y for S quency is purely imaginary. In Fig(& Ay is approximately
=10* are smaller than for the same conditions in equilibriumproportional toLg. The effect is very strongAy is much
A. For equilibriaB and C, however,Ay/y changes slightly larger thany for realistic Larmor diameter and fast particles
with the increase ofs up to the largest examined vall® density. Because of the strong effect the perturbation method
=5%x10°. is invalid. However one should expect a strong stabilizing

For finite v the effect of parallel temperature is in- effect for this fast particle density profile. Figurébbshows

M
yx component
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A 5F 0.6 T T T
i Im(Jy) Lofa =0
: —— = Lo/a=10.03
5F 0.3 —— Lo/a=0.1 —
_10§ [} I Lo/a =0.3
E— »15:

s 1 |
0A2L0/a0.3 0 01 02 03 0.#0/8.5
FIG. 5. Changes to the growth rat&y) due to«r)“,"x component(a) Ay vs
normalized gyrodiametety/a for n;=2 exg—(r/0.4%)?]x 10'* cm3; -0.3
(b) Ay vs peak radius of fast ion density distributiog/a for n;=2
X exp{—[(r—rg) /0.08]%} X 10" cm™3, L,/a=0.3. In both casesr,=2,
0,=2,m=1,ka=—-2.3,v1/vo=0, S=10%, y7,=1.73x10 2. The mode
resonant surface is locatedrdt~0.3. -0.6

|
0 0.2 0.4 0.6 0.8 1
r/a

that the effect is strongly influenced by the presence of fastiG. 7. Fast ion current componedy (in arbitrary unit$ vsr/a for differ-
particles near the resonance surface. The effects due to thést normalized Larmor diametets, /a due tooy,, oy, components.
component dominate the other contributions.

Figure Ga) shows the dependence &fy/y on S for the
density profile of Eq.(23). The absolute value of\y/y 1O these components of the conductivity tensor is suppressed.
strongly increases wits. This increase is due to the strong Figure 7 demonstrates this result. It shows the dominant
frequency(growth rate dependence of current response incomponent of fast ion curredt, for different Larmor diam-
Eq. (17). The effect of parallel temperature is included in the®tersLo/a for a flat fast particles density profile and /v,
coefficient (/|k |vr)?Z’ (w/|k |vy) in the equation for the =0. The current is a response to electric field components
fast particle current. For finite realistig this coefficientis a Presented in Fig. ). Figure 7 shows that the response is
small factor everywhere except near the resonance surfac@rgest wherl,—0. In this limit the response is local with
Figure Gb) shows thajA4| decreases witlv/v,y. For the — respect to the radial coordinate, and the current component
considered parametersy changes sign at some value of repeats the shape of the profile of electric field compo&egnt
vrlvg. For the realistic values afy, Ay is much smaller N Fig. 2(b). In this limit the conductivity tensor reduces to
than the one calculated in the limit=0 but its value is the collisionless cold plasma conductivity tensor. With the
comparable with the unperturbed growth rate. Thus finitdncrease ol,/a the response diminishes such that for real-
parallel temperature reduces the effect, but it remains strondstic Larmor diameters of fast particles in RFP one can ne-
This reduction of the effect can be smaller in a more realisticlect fast particles current relative to the current calculated in

model which includes the effects of trapped particles. the limit Lo—0. In a two fluid description at low frequency
the ionEX B drift is compensated by the electr&x B drift
C. of . of. . and o components such that the conductivity tensor componeafs, oy, cor-
s Oxyr Oyxs zx

responding to ions and electrons cancel each other. In our
The fast ion response due &, andoy, components is  case the fast ion response is suppressed for redligtizie to
calculated at the end of Sec. Ill. The response contains thﬁLR effects. The combined response from the electron com-
integral of electric field componenks , E,, which are local-  ponent that compensates the charge of fast ions and the fast
ized near the resonance surfdsee Fig. 2 The dominant ;g s the uncompensaté&dk B drift of electrons. This com-

componentE,, oscillates near the point=r. This leads 0 ineq result does not change during the transition to isotropic
the cancellation of terms inside the integral. Thus for rela'distribution function

tively large Larmor diameters the fast particle response due We applied the perturbation method to examine the ef-

fect of the above combined response on the plasma eigen-
_10! . ’ mode. Our calculations show that the correctiba to the

oy [ ' o b A"/TA(_)? 3 eigenmode frequency is purely real so that there is no
_”1025_ 3 (1); E changes to the growth rate. Also the absolute valudwfs

L 1 15 small relative to the changes to the growth rate calculated for

R 20F E the componenfa)fy (for v7=0) under similar conditions.

B ] 250 3 Thus the response due ttfy and 05X components changes

E (a) -3.0 (b) — somewhat the dispersion relation of the eigenmode but does
-10°E TCREETTRRET T 1; T R not have stabilizing or destabilizing influence within the con-

S vr/vo sidered model.

6. 6 o o i ate dueat L@ Ay Comparison of components}, anda ) of Egs.(12) and
. 6. Changes to the growth rate dued{, component.(a) Ayly vs M - .
Lundquist numberS for v /vo=0; (b) Ay vs vr/vy for S=10%. In both (11) shows thatgyx component is dominant among the two

cases ap=2, ©,=2, m=1, ka=-23, n,=2exi—(r/0.4%)%] unlessk; is sufficiently small. We kept the M component in
X 10" em™3, Ly/a=0.3. our analysis because it can be comparable witl‘o%ecom—
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ponent in the vicinity of resonance surface. Insertiorkpf burning plasmas in tokamaks are comparable with the typical
inside the integral discussed in Sec. Ill makes the respongadii examined here. Based on this comparison we suggest
due to o{\,"x component dominant in the resonance surfacehat the FLR effects can be important in these two cases.
region as well for realistic Larmor diameters. Result of per-
turbation method analysis shows thab due to thes}, com-

ponent is purely real and is much smaller tham due to the ACKNOWLEDGMENTS
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VI. SUMMARY AND DISCUSSION

We studied the FLR effects in the modeling of fast par- \ ppENDIX: CONTRIBUTION TO THE CONDUCTIVITY
ticles component on internal modes in RFPs. We conceng crnEL FF'QOM oE (k, ) COMPONENT
yyy

trated on a highly anisotropic fast particle distribution func-

tion with large perpendicular energy. We treat the effect of ~ The components of the conductivity tensor of E@B—
nonuniformity of the eigenfunction fields within a gyro-orbit (12) are found in the coordinates in whidh lle,. Applying
(although, for simplicity we consider the equilibrium mag- the tensor transformation rules one can find the conductivity
netic field to be uniform within a gyro-orbit Our results tensor corresponding to the componet‘jg(k,w) of Eqg. (9)
show that pure FLR effects are sizable such that unstablter a general orientation d€, , k; =k, (cose,sing,0),

modes with realistic growth rates can be strongly affected by sir? o«

. . . L (0] Sin¢ COS¢p
the NBI injected fast particles with realistic parameters. We U”.(k,w):(rgy(kL ,w).( )
found that the effect is strongest for the fast particle response —SIing COSe cos ¢
described by therg‘,"X component of the conductivity tensor. =B (K ) D,
The response due to this component is specific to the aniso- yy L e
tropic distribution function. Also a sizable effect is found for wherei=x,y, j=X,y.
the response due to théy Component of Conductivity ten- The COﬂdUCtiVity kernel can be obtained from its Fourier
sor. This component is responsible for transit time magneti¢ransform
pumping, which is the FLR effect that survives in waves in 1 w (o o
the limit of low frequency. The effects due to this componento;;(X,y) = (27)2 lefiwdkx dk, aij (Ky ,ky)e*'kxxf'kyy.

potentially survive the transition to an isotropic distribution
function. The effect on stability arises from the perturbedChanging the variables
Lorentz force contributed by the fluctuating fast particle cur-
rent. The specific physical origin of the current, a response to
the perturbed electric and magnetic fields, is complex sinceve find
the response of the large-orbit particles is nonlocal. Finite

. . - i X 1 o 2m
parallel velocity in the dlstrlbut_lor_w function reduces the ef- oij(x,y)= _Zf dk, ij de O-Ey(kJ_ )P ()
fects from both components within our model, due to phase (2m)* Jo 0
mixing in the velocity integral that occurs when the particle w @~ kL (xcose+y sine)
velocity is larger than the phase velocity of the perturbation. '
In a more realistic model accounting for particles trappingWe introduce cylindrical coordinates
this reduction is probably less significant. The main result of
our study is the demonstration of the significance of the FLR
effects in the fast particle response in RFPs. More accuratdnd use
modeling is required, however, to make quantitative predic-
tions. efikLr cos(p—6) — E Jn(kLr) . efin»rr/2+in67in<p'

The Larmor radii of fast ions in the MeV energy range "

corresponding to ICRH heated ions or alpha particles inThen after integration ovep we obtain

ky=k, cosp, k,=k, sing

X=r cosf, y=rsind

Jo(k, r)+J,(k, r)cos 20 Jo(k, r)sin26

1 o0
i(r,0)=-—| dk k a5k, - '
aij(r,0) yp. fo , kpogy(k @) Jo(k, 1)sin 26 Jo(k, r)—J5(k, r)cos 29

Transforming to cylindrical basis
E,=E, cosf—E,sind,
E,=E,;sin6+E,cosd,

and using the recurrence formulas for the Bessel functfoms get
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Ji(kyr) c
k. r

Jy(k,r '
—1( - )sina Ji(k,r)cosé
k. r

1 osf —Ji(k,r)sing
Uij(r,9)=§f0 dk, k oy (k, ,0)

wherei=x,y, j=r,0. Now

Ji(0,0): fozwdaJ’owdr raij(r,G)Ej(r,ﬁ)

with

2
wpi w

focdrrg..(r O)E(r,0) = —iop Z( w ) fxdrfocdk £ o Jo(6, ) Iu(£1 o) Ia(K r)(cosa)E
0 WA IR 2m2 » [klor kot | Jo o Ak €rodo(€r0)a(Er0)dakin)] g g |Br

e,

The integral ovek, can be taken in the first term by using Efj3). The integral ovek, in the second term diverges. This
divergence is because we use nonregular distribution function proportiodéd to-v). The divergence can be removed by
interchanging the order of integratigwhich corresponds to the initial integral relatipng/e rewrite the second term as

* ® , —sing
+f0 drrjo dk, kL§LOJ0(§LO)J1(§LO)J1(kLr)( cosé

[ [k k£ 03n(€109:(6034KiNE = [ Tak K £1030(6 01u(610) [ drrafikinE,
0 0 0 0

A rE,(r,0)]

:_jo dk, gLOJO(fLO)Jl(gLO)jO drJi(k,r) ar

) : I[rE 4(r,0
:‘fo deo Ak, £, o3o(£10)Iu(ELo)duk, 1) T EATO]

ar
2vglag; Wgi 1 A[rE4(r,6)]
=— dr- — > :
0 Uo 2 wil ar
T\ 25— | ——
Vo
[
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