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Fast ions in tokamaks are known to have a significant influence on global plasma instabilities. In
normal mode analyses for tokamaks, the perturbed electric and magnetic fields have been evaluated
at the position of the particle’s guiding center. The effect of spatial variation of the perturbed fields
within the gyroradius for resistive internal magnetohydrodynamic~MHD! modes is considered in
the present paper. The resulting tearing mode stability for the reversed field pinch~RFP! is
investigated. Such effects are important for neutral beam injected particles in current RFP
experiments and for fusion-generated alpha particles. The fast particle dielectric response is
evaluated from the linearized Vlasov equation, and inserted into a cylindrical MHD model for the
bulk plasma. The response is found for the simplified particles distribution function assuming that
equilibrium magnetic field is uniform within the gyro-orbit. The effect of large gyroradii is strong,
and can be either stabilizing or destabilizing~depending on the radial distribution of the fast particle
density!. The effect is maximal when the fast particles reside near the tearing-resonant
surface. ©2004 American Institute of Physics.@DOI: 10.1063/1.1643058#

I. INTRODUCTION

Fast ions in tokamaks have been found to have a signifi-
cant influence on the dynamics of global plasma stability.
The effect can be stabilizing or destabilizing. The destabiliz-
ing influence has been observed in fishbone oscillations of
neutral beam injected~NBI! plasmas; the stabilizing influ-
ence has been observed in the Joint European Torus tokamak
in which fast ions are produced by radio frequency heating
~see review by Porcelli1!.

In normal mode analyses of tokamak plasmas with low
poloidal and toroidal mode numbers the fast ion response has
been described by the linearized Vlasov equation in which an
expansion over the parametere5rL /a is made, whererL is
fast ion Larmor radius anda is the minor radius.2–4 The
finite Larmor radius~FLR! terms starting frome2 are ne-
glected in the analysis; thus the effects due to spatial varia-
tion of perturbed fields within the gyroradius are not consid-
ered. Exactly these effects we call FLR effects in our study.
The neglect of FLR effects has been motivated by two rea-
sons. First, the gyroradii are typically larger than the resistive
~reconnection! layer width. Hence, it is argued that the influ-
ence of the large gyroradius particles is suppressed through
orbit-averaging over an oscillatory radial wave function.
Second, the gyroradii can be much smaller than the perpen-
dicular wavelengths, so that the wave fields can be consid-
ered to be constant within a gyrodiameter. However, the
present work suggests that these arguments may not apply,
and finite gyroradius effects may be important, for some to-
kamak cases of interest, such as tokamaks with particles in
the MeV range.

The FLR effects may be particularly important for the
reversed field pinch~RFP!. In reversed field pinches the
magnetic field is an order of magnitude smaller than in toka-
maks. For example, in the Madison Symmetric Torus~MST!

experiment,5 the Larmor diameter of fast ions arising from
NBI ~at 20 keV! is about one third of the minor radius. The
perpendicular wave length of global plasma modes is com-
parable to the Larmor radius of fast particles. Thus the finite
Larmor radius effects mentioned above can be important.
The nonlocality of the FLR fast particle response introduces
complication in the modeling. In RFPs these FLR effects
~which survive in the limit of homogeneous equilibrium
magnetic field! should be addressed along with the effects of
the inhomogeneity~particle drifts, toroidal trapping!. The lat-
ter are extensively studied in tokamaks.

In our linear mode analysis we concentrate on FLR ef-
fects only and evaluate the stability of resistive internal
current-driven magnetohydrodynamic~MHD! modes. We
use the Vlasov equation to calculate the fast particles current
driven by the perturbed electric and magnetic fields assum-
ing that the equilibrium magnetic field is uniform within the
gyro-orbit. Our analysis is a special case of the general ap-
proach suggested by Brambilla6 for finding the low fre-
quency plasma response by integrating the linearized Vlasov
equation along the unperturbed orbits.

We consider a cylindrical plasma and a simple fast ion
distribution function

F~v!5
1

2pv0
d~v'2v0!•

1

ApvT

exp~2v i
2/vT

2!

with the assumptionvT!v0 . This approximates the distribu-
tion of perpendicularly injected fast ions, makes it possible
to find the conductivity kernel analytically, and retains the
FLR feature. The fast ion current, driven by the perturbed
electric and magnetic field, is inserted into the MHD equa-
tions to find the changes to the tearing instability with poloi-
dal wave numberm51 in the RFP.
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Our results show that for typical neutral beam injected
fast particle densities~a few percent of the bulk density! the
changes to the growth rates are substantial. The effect can be
stabilizing or destabilizing depending on the radial distribu-
tion of fast particles. Results depend strongly on the parti-
cle’s Larmor radius. The FLR effects alone can significantly
change the mode dynamics in RFP. The result is influenced
by the presence of fast particles inside the transition layer
~the effect which considered to be negligible in tokamak
modeling!. Finite spread in parallel velocity of fast particles
reduces the effect in our model. This reduction is probably
less significant when particle’s trapping is included.

Section II contains an analysis of internal modes without
fast particles. In Sec. III we derive the conductivity kernel
for calculation of fast particles current. In Sec. IV we com-
bine fast particles component with plasma bulk. This section
also contains a description of the approach used for solving
the combined system. In Sec. V we present the results of our
study. We summarize in Sec. VI.

II. CURRENT DRIVEN MODES WITHOUT FAST
PARTICLES

First we develop the numerical method for finding inter-
nal cylindrical eigenmodes in an RFP equilibrium. We con-
sider the resistive MHD model~see, e.g., Ref. 7! in the limit
of zero plasma pressure for the description of the plasma
bulk. We normalize variables such that

r 5ar̃, B5B0B̃, E5
vA

c
B0Ẽ, J5

c

4p

B0

a
J̃,

vA5
B0

A4pr0

,

v5
ṽ

tA
, tA5

a

vA
, r5r0r̃, h5h0h̃,

S5
tR

tA
, tR5

4pa2

c2h0
,

wherea is the radius of the cylinder,B0 , r0 , h0 are equi-
librium magnetic field, plasma density and plasma resistivity
at r 50 andS is the Lundquist number. In all of the follow-
ing equations in this section the variables are normalized.

We consider a force free equilibrium in which

¹3B5m~r !B. ~1!

Azimuthally and axially symmetric solution of Eq.~1! gives
equilibrium field componentsB̄r50, B̄u(r ), B̄z(r ). We lin-
earize resistive MHD equations about this equilibrium. As-
suming time dependence proportional toe2 ivt equations for
the perturbed quantities are

E1v3B̄5
h̄

S
J, ~2!

2 ivr̄v5 J̄3B1J3B̄, ~3!

¹3E5 ivB, ~4!

¹3B5J. ~5!

Equations~2!–~5! are Fourier analyzed so that spatial depen-
dence proportional toeimu1 ikz is considered. The boundary
value problem for the plasma eigenmodes is defined by Eqs.
~2!–~5!, and by the boundary conditions on axis and on the
surface of the perfectly conducting shell. On axis field com-
ponents are regular and atr 51 Eu(1)50, Ez(1)50. We
convert field components into a local coordinate frame con-
nected with the equilibrium magnetic field. The triad of unit
vectors of this frame iser , eh5b3er , ei5b, where b
5B̄/B̄. From Eqs.~2!–~5! we obtain a set of rather bulky
equations for Fourier amplitudesBr , Bh , Bi corresponding
to wave numbersm andk. These equations contain an alge-
braic equation forBr , and two second order differential
equations forBh andBi with coefficients containing deriva-
tives of equilibrium field components.

The location of the resonance surfacer s is defined by
ki(r s)50 where

ki5k"b5
m

r

B̄u

B̄
1k

B̄z

B̄
.

To find the eigenmode we match solutions found in the re-
gions 0<r<r s and r s<r<1 at the resonance point as fol-
lows. Applying two sets of boundary conditions atr 5r s

Bh(r s)51, Bi(r s)50 andBh(r s)50, Bi(r s)51 for fixed v
we find the corresponding solutions of differential equations
in these two regions which are subject to the boundary con-
ditions atr 50 andr 51. These solutions are found numeri-
cally by a finite difference method. Continuity of current
componentsJh andJi at r 5r s ~which is equivalent to con-
tinuity of Bh8 and Bi8) applied to an arbitrary linear combi-
nation of the two solutions leads to a set of two uniform
algebraic equations for the unknown coefficients of the linear
combination. Then we scan frequencyv to find the eigen-
value for which the equations have a solution. For the found
eigenvalue relation between the coefficients provides the
necessary relation betweenBh andBi at r 5r s .

In this approach equations based on the resistive MHD
model are solved on the entire interval 0<r<1. Such an
approach is more numerically intensive than the one in
which resistive MHD equations are solved in the vicinity of
the resonance surface and the ideal MHD equations are used
in the rest of the plasma. Introduction of the nonlocal fast
particle response is more simple, however, in the model in
which one type of equations is used everywhere in the
plasma.

One should also note that matching solutions at the reso-
nant surface is more appropriate for numerical analysis than
the adjustment of boundary conditions atr 51. In the latter
case an arbitrary boundary condition atr 51 excites~in the
resistive MHD model! a very rapidly growing solution in the
region outside the resonance layer resulting in a stiff matrix
in the eigenvalue analysis.

The equilibrium current profile is parametrized such that
m52Q0@12(r /a)a0#. We also assume thatr̄(r )51 and
h̄(r )51. A stability diagram for them51 modes in the
a0–Q0 plane is presented in Ref. 8. We reproduced this
diagram here in Fig. 1. We analyze the effects of fast par-
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ticles on the modes in the unstable region of the diagram. In
the following sections we will focus on pointsA (a053,
Q051.75), B (a052.6, Q051.8), andC (a052, Q052)
on the diagram in Fig. 1.

Figure 2 shows the radial profiles of field components of
tearing mode for equilibriumA for two Lundquist numbers.
The field components are in arbitrary units but their relative
magnitudes are preserved. Magnetic and electric field com-
ponents calculated withS5104 are presented on Figs. 2~a!
and 2~b!. The components calculated withS5105 are pre-
sented in Figs. 2~c! and 2~d!. The wave numbers for these
figures arem51 andka522. ForS5104 the growth rate of
the tearing mode isgtA51.1031023, for S5105 gtA

56.4031024. Electric field components of the mode are
localized near the resonance surface~the same is true forEi

which is much smaller thanEr , Eh and is not presented in
these figures! while magnetic field components are spread
over the entire plasma. The electric field is more localized
for larger S. The growth rate scales asg}S22/5 when S
→`. The mode structure for equilibriumsB andC is similar
to the one presented in Fig. 2.

III. FAST PARTICLE RESPONSE

In this section we evaluate the fast particle response to a
perturbation of the electromagnetic field. For the time of the
mode growth fast ions are collisionless. We concentrate on
finite Larmor radius effects only and find the linear nonlocal
dielectric response of a population of fast ions in a uniform
magnetic field. In the following sections we will use this
response to calculate the changes to the internal modes in
RFP. With this simplification a reasonable accuracy is pre-
served when particles are distributed not far from the mag-
netic axis.

Let B̄iz, then in general in the uniform magnetic field
the relation between the perturbed current of fast ions and

perturbed electric and magnetic fields with wave numberkz

is

Ji~x50,y50,kz!5E
2`

` E
2`

`

dx dys i j
E~x,y!Ej~x,y!

1E
2`

` E
2`

`

dx dys i j
B~x,y!Bj~x,y!.

~6!

In this equationi , j 5x,y,z. The conductivity kernelss i j
E and

s i j
M which are to be found are functions of coordinatesx, y

which are defined in a vicinity of point labeledx50, y50.
Magnetic field in Eq.~6! can be expressed in terms of elec-
tric field using Maxwell equation¹3E5 ( iv/c)B. We
keep, however, the separate contribution from electric and
magnetic fields as in Eq.~6!. In this form the kernel compo-
nents are more simple and more suitable for numerical analy-
sis.

First we consider kernelss i j
E and s i j

B in Fourier repre-
sentation such that

Ji~kx ,ky!5s i j
E~kx ,ky!Ej~kx ,ky!

1s i j
M~kx ,ky!Bj~kx ,ky!,

wherekx , ky are the wave numbers corresponding to coor-
dinatesx, y. For a general distribution function of fast ions
F(v' ,v i) and for k5k'ex1kiez the conductivity tensor is
found by the integration of the linearized Vlasov equation
along the unperturbed particles orbits~see, e.g., Ref. 9!,

FIG. 2. Field components of tearing mode~in arbitrary units!. ~a!,~b! S
5104; ~c!,~d! S5105. In all casesa053, Q051.75, m51, ka522.

FIG. 1. Stability diagram form51 modes.@V. Antoni, D. Merlin, S. Orto-
lani, and R. Paccagnella, Nucl. Fusion26, 1711~1986!.#
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s i j
E,M~k,v!52

1

4p i

vpi
2

v E
0

`

v' dv'E
2`

`

dv iF2p (
n52`

1`
v

v2nvci2kiv i
Qi j

n E,M~v' ,v i ,k,v!G , ~7!

with

Qxx
nE52

n2

j'
2 Jn

2~j'!v'

]F

]v'

,

Qxy
nE52Qyx

nE52 i
n

j'

Jn~j'!Jn8~j'!v'

]F

]v'

,

Qxz
nE52

n

j'

Jn
2~j'!v'

]F

]v i
,

Qyy
nE52Jn8

2~j'!v'

]F

]v'

,

Qyz
nE5 iJn~j'!Jn8~j'!v'

]F

]v i
,

Qzx
nE52

n

j'

Jn
2~j'!v i

]F

]v'

,

Qzy
nE52 iJn~j'!Jn8~j'!v i

]F

]v'

,

Qzz
nE52Jn

2~j'!v i

]F

]v i
,

Qxx
nM5Qyy

nM5 i
n

j'

Jn~j'!Jn8~j'!
v'

c
QvF,

Qxy
nM52

n2

j'
2 Jn

2~j'!
v'

c
QvF,

Qyx
nM5Jn8

2~j'!
v'

c
QvF, Qxz

nM50, Qyz
nM50,

Qzx
nM5 iJn~j'!Jn8~j'!

v i
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QvF,

Qzy
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n

j'
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v i
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QvF, Qzz

nM50,

where

j'5
k'v'

vci
, QvF5v'

]F

]v i
2v i

]F

]v'

and Jn are the Bessel functions. In Eq.~7! vpi and vci are
the plasma and cyclotron frequency of fast ions.

We consider a simple distribution function of fast par-
ticles

F~v!5
1

2pv0
d~v'2v0!•

1

ApvT

e2 v i
2/vT

2
,

~8!

2pE
0

`

dv' v'E
2`

`

dv i F~v!51,

wherev' , v i are velocity components in cylindrical coordi-
nates. Such a choice of the distribution function permits an
analytic calculation of the conductivity kernels in Eq.~6! and
it is appropriate for focusing on the FLR effects which are
related to the perpendicular part of the distribution function.
We retain some Gaussian spread in parallel velocity which is
relevant to realistic distribution functions and can influence
significantly the results of our study. We consider, however,
the cases in whichvT!v0 .

In our case the growth rate of the mode is much smaller
than the cyclotron frequency of fast ions. There is a small
parameter«5uvu/vci . Careful analysis shows that for the
given perturbed field amplitudes presented in Fig. 2 the
dominant contribution to the perturbed fast particles current
is due to componentssyy

E , sxy
E , syx

E , syx
M , szx

M . The re-
sponse due to the other components is at least by the factor«
smaller and they are not considered in our analysis.

Substituting the distribution function of Eq.~8! into Eq.
~7!, and using«!1 andkivT!vci one obtains

syy
E ~k,v!5

1

2p i

vpi
2

v
j'0J0~j'0!J1~j'0!

•

v

ukiuvT
ZS v

ukiuvT
D , ~9!

sxy
E ~k,v!52syx

E ~k,v!

5
1

4p

vpi
2

vcij'0
@J0~j'0!J1~j'0!j'0#8, ~10!

syx
M ~k,v!5

1

4p i

vpi
2

v

kiv0
2

vc
J1

2~j'0!

•S v

ukiuvT
D 2

Z8S v

ukiuvT
D , ~11!

szx
M~k,v!52

1

4p

vpi
2

v

v0

c
J0~j'0!J1~j'0!

•S v

ukiuvT
D 2

Z8S v

ukiuvT
D , ~12!

wherej'05k'v0 /vci andZ is the plasma dispersion func-
tion. In our case of energetic ionsj'0 is not a small param-
eter. In Eq.~9! we neglected the terms which survive when
j'0→0 ~they correspond to polarization drift of particle in
the perturbed field! because they are of the order of
«2vpi

2 /v. The componentsyy
E (k,v) in the context of waves

in plasmas is responsible for the transit time magnetic pump-
ing effect which is the FLR effect remaining finite in the
limit «→0.

The conductivity tensor components describe particle
motion in a field which can vary significantly within a gyro-
radius, the case of interest here. In the limit of small gyrora-
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dius (j'0!1) and zero parallel velocity (vT→0), the cur-
rent obtained from the conductivity tensor contains both
single particle guiding center drifts and effects that arise only
with a distribution of particles~such as magnetization cur-
rents!. In the small gyroradius limit, thesxy

E component re-
duces toE3B̄ drift in the wave electric field and theszx

M

component reduces to the2m“B force ~where m is the
magnetic moment!. The other two components in Eqs.~9!–
~12! do not yield currents that can be reduced to known
single particle drifts.

Transformation of the conductivity kernels from Fourier
representation tox, y coordinates involves integrals of
Bessel functions

E
0

`

xJ0~x!J1~x!J1~bx!dx5H 1

pA222b2
, 0,b,2,

0, b.2,
~13!

E
0

`

J1
2~x!J1~bx!dx5H 1

2p
A222b2, 0,b,2,

0, b.2.

~14!

These integrals can be found in Ref. 10. An elegant property
of these integrals is that the result of integration is nonzero
within a limited range of the parameterb. This property is
directly related to the fact that the conductivity kernels are
nonzero within the particle’s Larmor diameter from the point
where the current is calculated. In the Appendix we present
the details of the derivation of the contribution to the con-
ductivity kernels i j

E(x,y) due to thesyy
E (k,v) component of

the conductivity tensor in Fourier representation. The contri-
butions from the other components of Eqs.~10!–~12! are
calculated in a similar way. The result is

syy
E : FJx~0,0!

Jy~0,0!G52
i

~2p!2

vpi
2

v
•

v

ukiuvT

ZS v

ukiuvT
D E

0

2p

duE
0

2v0 /vci
dr•

vci

v0

1

pA222S vcir

v0
D 2

3H S cosu
sinu DEr~r ,u!1S sinu

2cosu D ]@rEu~r ,u!#

]r
J , ~15!

sxy
E ,syx

E : FJx~0,0!

Jy~0,0!G5 1

8p3

vpi
2

v0
E

0

2p

duE
0

2v0 /vci
drS vcir

v0
D 2 1

A222S vcir

v0
D 2

S sinu cosu

2cosu sinu D F Er~r ,u!

Eu~r ,u!G , ~16!

syx
M : FJx~0,0!

Jy~0,0!G5 i

16p3

vpi
2

v

kiv0

v

vci

c
•S v

ukiuvT
D 2

Z8S v

ukiuvT
D

3E
0

2p

duE
0

2v0 /vci
dr3 2sinu

S vcir

v0
D 2

A222S vcir

v0
D 2 cosuA222S vcir

v0
D 2

cosu

S vcir

v0
D 2

A222S vcir

v0
D 2 sinuA222S vcir

v0
D 24 F Br~r ,u!

Bu~r ,u!G , ~17!

szx
M : Jz~0,0!5

i

8p2

vpi
2

v

vci

c
•S v

ukiuvT
D 2

Z8S v

ukiuvT
D E

0

2p

duE
0

2v0 /vci
dr•

vci

v0

r

pA222S vcir

v0
D 2

Br~r ,u!. ~18!

984 Phys. Plasmas, Vol. 11, No. 3, March 2004 V. A. Svidzinski and S. C. Prager

Downloaded 23 Feb 2005 to 128.104.223.90. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



In these equations current componentsJx , Jy , Jz at the point
x50, y50 are calculated in terms of integrals of field com-
ponentsEr , Eu , Br , Bu calculated in polar coordinatesr , u
such thatx5r cosu, y5r sinu. The integration is limited to
the area inside the circle with the radius equal to the Larmor
diameterL052v0 /vci of ions.

The conductivity kernel components in Eqs.~15!–~18!
are singular but integrable atr 5L0 , following from F(v)
}d(v'2v0). Also because of this kind of distribution func-
tion used in the calculations the response due to thesyy

E

component involves not onlyEr , Eu but also]Eu /]r . For a
regular distribution function the kernel is regular and one can
avoid the presence of spatial derivatives inside the integral.

Because of a localized structure of eigenfunctions an en-
hanced numerical resolution is required in some cases for
accurate integration.

Equations~15!–~18! can be simplified as follows. Using
Maxwell equation

“3Euz5
1

r

]

]r
~rEu!2

1

r

]Er

]u
5

iv

c
Bz

one can express the combination of electric field components
in Eq. ~15! in terms ofBz . Then the change of variable

r 5L0 sinb ~19!

reduces Eq.~15! to

FJx~0,0!

Jy~0,0!G5 L0

4p3

vpi
2

c
•

v

ukiuvT
ZS v

ukiuvT
D E

0

2p

duE
0

p/2

dbS sinu
2cosu D sinbBz~L0 sinb,u!. ~20!

In a similar way the change of variable of Eq.~19! simplifies
Eqs.~16!–~18!. In these new variables the conductivity ker-
nels are regular simple functions which are well suited for
numerical integration.

In the above derivations we obtained analytical results
for the conductivity kernels inx, y ~or r ,u) coordinates. It
seems that an analytical result cannot be obtained when one
replaces one of the coordinates by its Fourier representation,
for instancex, ky combination.

Perpendicular electric field in the eigenmodes in Fig. 2 is
mostly electrostatic. Particles current responding on the elec-
trostatic part of the electric field is due to thesyx

E component.
Equation~20! shows that the current due tosyy

E component
is the response on electromagnetic part of perturbation. This

response can be comparable with the response on the domi-
nant electrostatic part of the electric field because of the scal-
ing syx

E ;«syy
E @see Eqs.~9! and ~10!#.

In order to use the fast particles response found in this
section in the analysis of cylindrical eigenmodes with wave
numbersm andk one should find the corresponding integral
relations between the Fourier amplitudes in the global cylin-
drical coordinates~which are not connected with the point in
which the perturbed current is considered!. For this one
should recalculate the above integral relations in global cy-
lindrical coordinates and then make a Fourier transform of
coordinateu. One obtains the corresponding contributions to
the current response

syy
E : FJr

m~r !

Jh
m~r !G5

d1

p2 L̃0E
0

2p

dũE
0
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db•
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2cosũ
DBi

m~r 1!eima,
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E
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M : FJr
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0
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G

3FBr
m~r 1!

Bh
m~r 1!G ,

szx
M : Ji

m~r !5
id1

2p2

vci

v
L̃0E

0

2p

dũE
0

p/2

db•S v

ukiuvT
D 2

Z8S v

ukiuvT
D sinb@cos~a2 ũ !Br

m~r 1!2sin~a2 ũ !Bh
m~r 1!#eima,
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where r 15A(r 1L0 sinb cosũ)21(L0 sinb sinũ)2, cosa5(r
1L0 sinb cosũ)/r1, sina5L0 sinb sinũ/r1, L̃05L0 /a, d1

5vpi
2 a2/c2. In the above equations components of current,

electric and magnetic fields are normalized as in the begin-
ning of Sec. II.r 1 is the radial coordinate which is the func-
tion of variables of integration. The basiser , eh , ei is de-
fined in Sec. II. In these equations recalculation in the global
cylindrical coordinates is made with approximation thatB̄iz.
The use of these equations for real RFP equilibrium is valid
only when fast particles are not far from the magnetic axis.
We assume that the density profile of fast particles is taken
into account by a radial dependence of coefficientd1 .

In the above equationski is now the function ofr 1 de-
fined in Sec. II. We moved theki(r ) dependence inside the
integrals due to the following. For an arbitrary spectrum of
electric field the spectrum of current isJ(x0 ,y0 ,kz)
5**dx dys(x2x0 ,y2y0 ,kz)E(x,y,kz). The response of
current on electric field of the form E1(x,y,z)
5E1(x,y)eik(x,y)z is J(x0 ,y0 ,z)}**dx dys@x2x0 ,y
2y0 ,k(x,y)#E1(x,y)eik(x,y)z. If k(x,y) slowly varies with
x,y one can assumeeik(x,y)z'eik(x0 ,y0)z which validates the
insertion of ki(r ) dependence inside the integrals. For the
ki(r ) profiles used in our analysis this approximation is jus-
tified for almost the whole range of the examined Larmor
diametersL0 . For a finitevT in the distribution function of
Eq. ~8! the conductivity kernel strongly depends onki in the
vicinity of the resonance surface. The positioning of the de-
pendenceki(r ) inside the integrals properly handles this situ-
ation.

IV. FAST PARTICLE CONTRIBUTION

We assume that the fast ion density is much smaller than
the bulk density. We neglect the influence of fast ions on the
plasma equilibrium, as well as the collisions between bulk
particles and fast ions. The fast ions are considered as a
separate plasma component which interacts with the plasma
bulk only via the collective electromagnetic field.

If we assume thatJ is the current of the plasma bulk then
the contribution from fast particles changes only Eq.~5! in
the set of Eqs.~2!–~5! such as

¹3B5J1Jf . ~21!

In this equationJf is the current response of fast particles on
the specified perturbation of electromagnetic field. We ne-
glect the contribution of the fast ions to Ohm’s law. Hence
the fast ions enter the MHD dynamics only through their
influence on the perturbed magnetic field. The response,Jf ,
is calculated in the preceding section. There is also a contri-
bution from the electron component that compensates the
charge of fast ions. Because of low density the response from
this component is negligible relative to the response from
bulk electrons. This component, however, makes a contribu-
tion when theE3B̄ drift of the electrons in this component
is not balanced by the drift of fast ions because of the FLR
effects. This contribution is formally included inJf in Eq.
~21! ~we discuss it in Sec. V C!. Equations~2!–~4!, ~21! for-
mulate the eigenmode problem in the presence of fast par-
ticles.

We find the changes to the growth rates of unstable
modes due to the presence of fast particles by two methods.
First, assuming the fast particles response to be a correction
to the MHD current we develop a perturbation technique for
finding the changes to the growth rate. In a different ap-
proach based on a time evolution of an initial value problem
we find an accurate solution with the presence of fast par-
ticles. In this approach the accurate solution is found for the
syy

E component of fast ions response. The exact time evolu-
tion method is numerically intensive and it is developed for
one specific case~see the remark later in this section!. We
use the exact method to benchmark the perturbation tech-
nique, and then use the latter for the results.

In the perturbation technique the substitution of the form
B→B1B̃, . . . , v→v1Dv is made in Eqs.~2!–~4!,~21!,
where B, v relates to the eigenmode values without fast
particles. As in Sec. II one can derive a set of equations for
amplitudesB̃r , B̃h , B̃i in the form in which the right-hand
side in these equations contains terms proportional toDv
~they contain combinations of the unperturbed field compo-
nents! and terms containing componentsJf ~these are calcu-
lated as a response on the unperturbed fields of the eigen-
mode!.

The general solution of these equations is

S B̃h

B̃i
D 5C1S Bh

1

Bi
1D 1C2S Bh

2

Bi
2D 1S Bh

f

Bi
f D 1DvS Bh

D

Bi
DD . ~22!

The coefficientsC1 and C2 in this solution are arbitrary.
FunctionsBh

1 , Bi
1 andBh

2 , Bi
2 are the solutions of uniform

equations corresponding to boundary conditions on the reso-
nance surfaceBh

1(r s)51, Bi
1(r s)50 andBh

2(r s)50, Bi
2(r s)

51. FunctionsBh
f , Bi

f and Bh
D , Bi

D are the particular solu-
tions of nonuniform set of equations corresponding to the
right-hand-side terms which contain componentsJf and
which are proportional toDv, respectively. These solutions
are calculated with the boundary conditionsBh

f (r s)5Bi
f(r s)

50, Bh
D(r s)5Bi

D(r s)50.
With the help of the solution of Eq.~22! one can find the

total plasma current in two regions 0<r ,r s and r s,r<1.
Matching the tangential components of the total current at
r 5r s leads to an algebraic nonuniform set of equations for
the coefficientsC1 and C2 . Because the functions with su-
perscripts ‘‘1’’ and ‘‘2’’ are the solutions of unperturbed
problem, the determinant of the set of equations forC1 and
C2 is zero. In order for this system of equations to have a
solution, it is necessary that the rank of the coefficient matrix
be equal to the rank of its augmented matrix. This condition
leads to the equation forDv.

In a different approach we solve time dependent resistive
MHD equations combined with Eq.~21! as an initial value
problem. We solve this problem in this way only for the fast
ions response due tosyy

E component of the conductivity ten-
sor and only in the limitvT50. In this case the current re-
sponse of Eq.~20! is local in time ~it does not depend on
frequencyv! which simplifies the solution method. The ini-
tial value problem is solved numerically by an explicit
predictor–corrector method.
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We compare the results of perturbation method with the
exact results from the time evolution approach. We consider
changes to the growth rate due tosyy

E component of fast
particles response. Table I shows the growth rates for three
unstable equilibriaC, B, A in Fig. 1 without fast particles
and the changes to the growth rates due to fast particles
calculated by the perturbation method and by the exact time
evolution method. For each casem51, vT50, L0 /a50.3,
S5104, fast particles density profile

nf5H 23F12S r /a

0.35D
3G31011 cm23, r /a<0.35,

0, r /a.0.35.

The wave numbersk are chosen such that for each equilib-
rium in Table I the location of resonance surface is approxi-
mately atr s50.3. The density profile of fast particles covers
the resonance surface. In accordance with the restrictions of
the model fast particles are distributed not far from magnetic
axis.

For the cases whenDg is small relative to the unper-
turbed growth rateg the perturbation method result is close
to the exact result. WhenDg is comparable tog the results of
the two methods show similar trends. For the least unstable
equilibrium in Table I, the perturbation method gives the
stabilizing correction to the growth rate which is larger than
the growth rate itself, while the exact solution corresponds to
the stabilized mode. Thus the perturbation method is appro-
priate for qualitative analysis. With this method one can es-
timate the strength and the direction of the effect. In the next
section the effects of fast particles will be examined using
the perturbation method.

V. RESULTS

In this section we analyze the changes to the growth
rates of the unstable modes due to fast particles. We apply
the perturbation method discussed in the preceding section.
We consider the effects from each component of the conduc-
tivity tensor of Eqs.~9!–~12! separately. Some components
of the conductivity tensor are specific to the highly aniso-
tropic distribution function of Eq.~8! used in our analysis
~they disappear in the isotropic case! while others preserve
their property when a transition to isotropic distribution
function is made. In a separate analysis of each component
one can make some assumptions about the results when a

more general distribution function is used. In this section we
consider plasma bulk equilibrium described in Sec. II with
uniform density profilen(r )51013 cm23.

A. syy
E component

We consider a case appropriate for the MST experiment
with magnetic fieldB53 kG. Fast hydrogen ions with en-
ergy 20 keV have Larmor diameterL0 /a'0.3 for a
550 cm. The fast ion response due to thesyy

E component
contains the componentBi in the integral over the area lim-
ited by the Larmor diameter~see Sec. III!. For the profiles of
Bi corresponding to the cylindrical eigenmodes shown in
Fig. 2 fast ion current, calculated for a typical Larmor diam-
eter of neutral beam injected particles, is a smooth function
of radius everywhere including the vicinity of resonance sur-
face. The field componentBi does not change sign at the
resonance so that there is no cancellation of terms during the
integration. The current is as strong near the resonance as in
the outer region.

In the following cases we select equilibriumA (a053,
Q051.75) of Fig. 1 and evaluate the changes to the eigen-
mode with wave numbersm51 and ka522. Figure 3~a!
shows the changes to the growth rateDg versus normalized
Larmor diameterL0 /a. The correction to the eigenfrequency
is purely imaginary, only the growth rate is changed. We
have chosen the fast particle density profile as

nf52 expF2S r

0.45aD 2G31011 cm23 ~23!

with vT /v050, S5104 and the unperturbed growth rate
gtA51.1031023. The fast particle density profilenf covers
the resonance surface which is located nearr /a50.3. The
dependence ofDg on L0 in Fig. 3~a! is approximately qua-
dratic. The effect is sizable;Dg is comparable withg for the
realistic Larmor diameter and the density of fast particles.
For this radial profile of fast particles density the effect is
stabilizing. The contribution from fast ions is due to FLR
effects, disappearing in the limitL0→0.

We examine the influence of the radial location of the
fast particles by considering a narrow distributionnf

52 exp$2@(r2r0) /0.05a#2%31011 cm23, and varying r 0 .
For the linear problemDg corresponding to a realistic den-
sity profile is a superposition of parts due to different narrow

TABLE I. Comparison of results of perturbation method with exact solu-
tion.

Without fast particles
Changes to the growth rate

due to fast particles

Equilibrium gtA

DgtA

perturbation method
DgtA

exact

a052, Q052
ka522.3

1.7331022 20.16231022 20.1431022

a052.6, Q051.8
ka522

9.5631023 22.8931023 22.131023

a053, Q051.75
ka522

1.131023 21.3431023 Stable

FIG. 3. Changes to the growth rate~Dg! due tosyy
E component.~a! Dg vs

normalized gyrodiameterL0 /a for nf52 exp@2(r/0.45a)2#31011 cm23;
~b! Dg vs peak radius of fast ion density distributionr 0 /a for nf52
3exp$2@(r2r0) /0.05a#2%31011 cm23, L0 /a50.3. In both casesa053,
Q051.75, m51, ka522, vT /v050, S5104, gtA51.1031023. The
mode resonant surface is located atr /a'0.3.
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density profiles.Dg calculated for the particular narrow den-
sity profile centered atr 5r 0 approximately shows the con-
tribution from the fast particles located at this point. Figure
3~b! shows the dependence ofDg on r 0 /a for L0 /a50.3.
The other parameters are the same as in Fig. 3~a!. There is a
strong influence onDg from fast particles distributed near
the resonance surface. Thus for the contribution fromsyy

E

component the result strongly depends on the presence of
fast particles at the resonance surface. The slowly varying
near resonance surface perpendicular fast particles current
due to this component of the conductivity tensor tends to
stabilize the mode. In general, the effect is stabilizing for the
distributions which cover the resonance surface. Results
similar to those presented in Figs. 3~a! and 3~b! but with
different scales are obtained for other equilibria and different
Lundquist numbers. The relative changes to the growth rate
for more unstable equilibria are weaker.

In the cases when the Larmor diameter is specified in our
calculations its value corresponds to the realistic energy of
NBI particles in the RFP. In these conditions the assumption
of uniformity of equilibrium field within the gyro-orbit is not
accurate. Results of calculations with smaller Larmor diam-
eters are similar to those presented in the paper with the only
difference being that the changes to the growth rate are
smaller. Extension of the model to the larger Larmor diam-
eters provides a qualitative trend of the strength of the effect
which is in line with the use of the perturbation method for
the qualitative analysis.

The fast particle distribution is flat when compared with
the strongly localized components of plasma velocity and
electric field in the eigenmode. As a result of the introduction
of the fast particle component an additional volume force
df(r ) is exerted on the plasma bulk. The forcedf(r ) relates
to the correction to the right-hand side in Eq.~3! due to the
perturbation of magnetic field and bulk current when the fast
particles are added. The radial spread of this force is wider
than the resonant region and its shape roughly repeats the
radial distribution of fast particles. The work done by the
force df(r ) on the plasma per unit time is*df(r )•v(r )dr ,
wherev(r ) is the velocity profile in the unperturbed eigen-
mode. Becausev(r ) is localized near the resonance the con-
tribution to the integral is strongest fromdf(r ) near the reso-
nance. Thus one should expect that the strongest effect on the
eigenmode is from particles distributed near the resonance.
The width of profilesDg versusr 0 is determined by the
width of test functionnf(r ) used in Fig. 3~b! which is wider
than the unperturbed eigenfunctions near the resonance.

We examine the effect for different Lundquist numbers.
Figure 4~a! shows the dependence ofDg/g on S for the den-
sity profile of Eq. ~23!. The ratio uDgu/g reduces with the
increase ofS. This is probably due to the narrowing of the
resistive~reconnection! layer width which reduces the influ-
ence of fast particles within this region. For the more un-
stable equilibriaB and C in Fig. 1 the ratiosuDgu/g for S
5104 are smaller than for the same conditions in equilibrium
A. For equilibriaB andC, however,Dg/g changes slightly
with the increase ofS up to the largest examined valueS
553105.

For finite vT the effect of parallel temperature is in-

cluded in the coefficient2 (v/ukiuvT) Z(v/ukiuvT) in the
equation for fast particles current. Because of the relatively
small growth rateg}uvu this coefficient is a small factor for
finite realisticvT everywhere except near the resonance sur-
face whereki(r )→0. The suppression of the response is due
to the phase mixing in velocity integral occurring when par-
ticle’s velocity is larger than the phase velocity of the pertur-
bation. Figure 4~b! shows the dependence ofDg on vT /v0

for the density profile of Eq.~23!. uDgu decreases rapidly
with the increase ofvT /v0 . The effect diminishes with finite
parallel temperature. Within the considered model the contri-
bution from syy

E component is suppressed for a realistic
spread of parallel velocity of neutral beam particles injected
perpendicularly to magnetic field. In a more realistic model
including particle trapping the effect from this component
could survive. Also the effect should be stronger in tokamaks
because of the smaller value ofki ~from the weaker magnetic
shear! of the core resonant modes.

B. syx
M component

The fast ion current response due to thesyx
M component

appears because of anisotropy of the distribution function. In
the limit vT→0 this response is proportional tov22 @see Eq.
~17!#. Because of the relative smallness of the growth rates
this response is very strong. The current response on the
given perturbation of magnetic field is a smooth function of
radius everywhere in the plasma. There is no suppression of
the response at the resonance surface sinceBh is not oscil-
latory with radius. Because the response is strong we con-
sider the changes to the growth rate for the most unstable
equilibrium C in Fig. 1.

For this component we perform similar analysis as for
the componentsyy

E . In the following cases we consider the
equilibrium C (a052, Q052) with m51, ka522.3. Fig-
ure 5~a! shows the dependence ofDg on L0 /a for fast par-
ticles density profile of Eq.~23!. The unperturbed growth
rate is gtA51.7331022. The correction to the eigenfre-
quency is purely imaginary. In Fig. 5~a! Dg is approximately
proportional toL0

4. The effect is very strong;Dg is much
larger thang for realistic Larmor diameter and fast particles
density. Because of the strong effect the perturbation method
is invalid. However one should expect a strong stabilizing
effect for this fast particle density profile. Figure 5~b! shows

FIG. 4. Changes to the growth rate due tosyy
E component.~a! Dg/g vs

Lundquist numberS for vT /v050; ~b! Dg vs vT /v0 for S5104. In both
cases a053, Q051.75, m51, ka522, nf52 exp@2(r/0.45a)2#
31011 cm23, L0 /a50.3.
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that the effect is strongly influenced by the presence of fast
particles near the resonance surface. The effects due to this
component dominate the other contributions.

Figure 6~a! shows the dependence ofDg/g on S for the
density profile of Eq.~23!. The absolute value ofDg/g
strongly increases withS. This increase is due to the strong
frequency~growth rate! dependence of current response in
Eq. ~17!. The effect of parallel temperature is included in the
coefficient (v/ukiuvT)2Z8(v/ukiuvT) in the equation for the
fast particle current. For finite realisticvT this coefficient is a
small factor everywhere except near the resonance surface.
Figure 6~b! shows thatuDgu decreases withvT /v0 . For the
considered parametersDg changes sign at some value of
vT /v0 . For the realistic values ofvT , Dg is much smaller
than the one calculated in the limitvT50 but its value is
comparable with the unperturbed growth rate. Thus finite
parallel temperature reduces the effect, but it remains strong.
This reduction of the effect can be smaller in a more realistic
model which includes the effects of trapped particles.

C. sxy
E , syx

E , and szx
M components

The fast ion response due tosxy
E andsyx

E components is
calculated at the end of Sec. III. The response contains the
integral of electric field componentsEr , Eh which are local-
ized near the resonance surface~see Fig. 2!. The dominant
component,Er , oscillates near the pointr 5r s . This leads to
the cancellation of terms inside the integral. Thus for rela-
tively large Larmor diameters the fast particle response due

to these components of the conductivity tensor is suppressed.
Figure 7 demonstrates this result. It shows the dominant
component of fast ion currentJh for different Larmor diam-
etersL0 /a for a flat fast particles density profile andvT /v0

50. The current is a response to electric field components
presented in Fig. 2~b!. Figure 7 shows that the response is
largest whenL0→0. In this limit the response is local with
respect to the radial coordinate, and the current component
repeats the shape of the profile of electric field componentEr

in Fig. 2~b!. In this limit the conductivity tensor reduces to
the collisionless cold plasma conductivity tensor. With the
increase ofL0 /a the response diminishes such that for real-
istic Larmor diameters of fast particles in RFP one can ne-
glect fast particles current relative to the current calculated in
the limit L0→0. In a two fluid description at low frequency
the ionE3B̄ drift is compensated by the electronE3B̄ drift
such that the conductivity tensor componentssxy

E , syx
E cor-

responding to ions and electrons cancel each other. In our
case the fast ion response is suppressed for realisticL0 due to
FLR effects. The combined response from the electron com-
ponent that compensates the charge of fast ions and the fast
ions is the uncompensatedE3B̄ drift of electrons. This com-
bined result does not change during the transition to isotropic
distribution function.

We applied the perturbation method to examine the ef-
fect of the above combined response on the plasma eigen-
mode. Our calculations show that the correctionDv to the
eigenmode frequency is purely real so that there is no
changes to the growth rate. Also the absolute value ofDv is
small relative to the changes to the growth rate calculated for
the componentsyy

E ~for vT50) under similar conditions.
Thus the response due tosxy

E andsyx
E components changes

somewhat the dispersion relation of the eigenmode but does
not have stabilizing or destabilizing influence within the con-
sidered model.

Comparison of componentsszx
M andsyx

M of Eqs.~12! and
~11! shows thatsyx

M component is dominant among the two
unlesski is sufficiently small. We kept theszx

M component in
our analysis because it can be comparable with thesyx

M com-

FIG. 5. Changes to the growth rate~Dg! due tosyx
M component.~a! Dg vs

normalized gyrodiameterL0 /a for nf52 exp@2(r/0.45a)2#31011 cm23;
~b! Dg vs peak radius of fast ion density distributionr 0 /a for nf52
3exp$2@(r2r0) /0.05a#2%31011 cm23, L0 /a50.3. In both casesa052,
Q052, m51, ka522.3, vT /v050, S5104, gtA51.7331022. The mode
resonant surface is located atr /a'0.3.

FIG. 6. Changes to the growth rate due tosyx
M component.~a! Dg/g vs

Lundquist numberS for vT /v050; ~b! Dg vs vT /v0 for S5104. In both
cases a052, Q052, m51, ka522.3, nf52 exp@2(r/0.45a)2#
31011 cm23, L0 /a50.3.

FIG. 7. Fast ion current componentJh ~in arbitrary units! vs r /a for differ-
ent normalized Larmor diametersL0 /a due tosxy

E , syx
E components.
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ponent in the vicinity of resonance surface. Insertion ofki

inside the integral discussed in Sec. III makes the response
due to syx

M component dominant in the resonance surface
region as well for realistic Larmor diameters. Result of per-
turbation method analysis shows thatDv due to theszx

M com-
ponent is purely real and is much smaller thanuDgu due to the
syx

M component for the same conditions. Therefore one can
neglect the effects due toszx

M component in comparison with
the effects due tosyx

M component of the conductivity tensor.

VI. SUMMARY AND DISCUSSION

We studied the FLR effects in the modeling of fast par-
ticles component on internal modes in RFPs. We concen-
trated on a highly anisotropic fast particle distribution func-
tion with large perpendicular energy. We treat the effect of
nonuniformity of the eigenfunction fields within a gyro-orbit
~although, for simplicity we consider the equilibrium mag-
netic field to be uniform within a gyro-orbit!. Our results
show that pure FLR effects are sizable such that unstable
modes with realistic growth rates can be strongly affected by
the NBI injected fast particles with realistic parameters. We
found that the effect is strongest for the fast particle response
described by thesyx

M component of the conductivity tensor.
The response due to this component is specific to the aniso-
tropic distribution function. Also a sizable effect is found for
the response due to thesyy

E component of conductivity ten-
sor. This component is responsible for transit time magnetic
pumping, which is the FLR effect that survives in waves in
the limit of low frequency. The effects due to this component
potentially survive the transition to an isotropic distribution
function. The effect on stability arises from the perturbed
Lorentz force contributed by the fluctuating fast particle cur-
rent. The specific physical origin of the current, a response to
the perturbed electric and magnetic fields, is complex since
the response of the large-orbit particles is nonlocal. Finite
parallel velocity in the distribution function reduces the ef-
fects from both components within our model, due to phase
mixing in the velocity integral that occurs when the particle
velocity is larger than the phase velocity of the perturbation.
In a more realistic model accounting for particles trapping
this reduction is probably less significant. The main result of
our study is the demonstration of the significance of the FLR
effects in the fast particle response in RFPs. More accurate
modeling is required, however, to make quantitative predic-
tions.

The Larmor radii of fast ions in the MeV energy range
corresponding to ICRH heated ions or alpha particles in

burning plasmas in tokamaks are comparable with the typical
radii examined here. Based on this comparison we suggest
that the FLR effects can be important in these two cases.
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APPENDIX: CONTRIBUTION TO THE CONDUCTIVITY
KERNEL FROM syy

E
„k, v… COMPONENT

The components of the conductivity tensor of Eqs.~9!–
~12! are found in the coordinates in whichk'iex . Applying
the tensor transformation rules one can find the conductivity
tensor corresponding to the componentsyy

E (k,v) of Eq. ~9!
for a general orientation ofk' , k�5k'(cosw,sinw,0),

s i j ~k,v!5syy
E ~k' ,v!•S sin2 w 2sinw cosw

2sinw cosw cos2 w
D

5syy
E ~k' ,v!•F i j ,

wherei 5x,y, j 5x,y.
The conductivity kernel can be obtained from its Fourier

transform

s i j ~x,y!5
1

~2p!2 E
2`

` E
2`

`

dkx dky s i j ~kx ,ky!e2 ikxx2 ikyy.

Changing the variables

kx5k' cosw, ky5k' sinw

we find

s i j ~x,y!5
1

~2p!2 E
0

`

dk' k'E
0

2p

dw syy
E ~k' ,v!F i j ~w!

3e2 ik'(x cosw1y sin w).

We introduce cylindrical coordinates

x5r cosu, y5r sinu

and use

e2 ik'r cos(w2u)5(
n

Jn~k'r !•e2 inp/21 inu2 inw.

Then after integration overw we obtain

s i j ~r ,u!5
1

4p E
0

`

dk' k'syy
E ~k' ,v!S J0~k'r !1J2~k'r !cos 2u J2~k'r !sin 2u

J2~k'r !sin 2u J0~k'r !2J2~k'r !cos 2u D .

Transforming to cylindrical basis

Ex5Er cosu2Eu sinu,

Ey5Er sinu1Eu cosu,

and using the recurrence formulas for the Bessel functions10 we get
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s i j ~r ,u!5
1

2p E
0

`

dk' k'syy
E ~k' ,v!S J1~k'r !

k'r
cosu 2J18~k'r !sinu

J1~k'r !

k'r
sinu J18~k'r !cosu

D ,

wherei 5x,y, j 5r ,u. Now

Ji~0,0!5E
0

2p

duE
0

`

dr rs i j ~r ,u!Ej~r ,u!

with

E
0

`

dr rs i j ~r ,u!Ej~r ,u!5
2 i

~2p!2

vpi
2

v
•

v

ukiuvT
ZS v

ukiuvT
D H E

0

`

drE
0

`

dk' j'0J0~j'0!J1~j'0!J1~k'r !S cosu
sinu DEr

1E
0

`

dr r E
0

`

dk' k'j'0J0~j'0!J1~j'0!J18~k'r !S 2sinu
cosu DEuJ .

The integral overk' can be taken in the first term by using Eq.~13!. The integral overk' in the second term diverges. This
divergence is because we use nonregular distribution function proportional tod(v'2v0). The divergence can be removed by
interchanging the order of integration~which corresponds to the initial integral relations!. We rewrite the second term as

E
0

`

dr r E
0

`

dk' k'j'0J0~j'0!J1~j'0!J18~k'r !Eu5E
0

`

dk' k'j'0J0~j'0!J1~j'0!E
0

`

dr rJ18~k'r !Eu

52E
0

`

dk' j'0J0~j'0!J1~j'0!E
0

`

dr J1~k'r !
]@rEu~r ,u!#

]r

52E
0

`

drE
0

`

dk' j'0J0~j'0!J1~j'0!J1~k'r !
]@rEu~r ,u!#

]r

52E
0

2v0 /vci
dr•

vci

v0

1

pA222S vcir

v0
D 2

]@rEu~r ,u!#

]r
.

The combined result from the two terms is Eq.~15!.
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